

ARTIFICIAL INTELLIGENCE AND STEAM CURRICULUM DEVELOPMENT

Ogunniyi Temeem Abiodun

phone number: 07034703398

E-mail: abiodunogunniyi100@yahoo.com

and

Abur Cletus Terhemba

DEPARTMENT OF MATHEMATICS EDUCATION

SCHOOL OF SECONDARY EDUCATION (SCIENCE)

FEDERAL COLLEGE OF EDUCATION (TECHNICAL) BICHI, P.M.B 3473.

Abstract

The underperformance of students in Science, Technology, Engineering, Art, and Mathematics (STEAM) fields is a critical global concern, often attributed to fragmented learning approaches, inadequate pedagogical strategies, and persistent socioeconomic and gender disparities. This paper advocates for the transformative potential of an integrated STEAM approach, which moves beyond the traditional STEM framework by incorporating Art to foster creativity, holistic thinking, and interdisciplinary problemsolving. The central focus of this work is the strategic integration of Artificial Intelligence into the STEAM curriculum as a crucial step in preparing students for the dynamic demands of the 21st-century job market. The integration of AI offers significant advantages, including the enhancement of students' technical skills through hands-on experience, the promotion of interdisciplinary learning, and the development of critical thinking and ethical awareness regarding emerging technologies. The paper provides a detailed discussion of AI concepts, its applications across various sectors, and the core principles of STEAM education, including interdisciplinary learning and project-based approaches. Ultimately, this work outlines the necessary principles and strategic considerations, including curriculum mapping, professional development, and collaborative planning, required to develop, evaluate, and sustain an effective, inclusive, and future-ready STEAM curriculum that leverages the power of Artificial Intelligence.

Keywords: Artificial Intelligence (AI), STEAM, Curriculum Development

Introduction

The underperformance of Science, Technology, Engineering, Art and Mathematics (STEAM) students in global educational systems is a significant concern. This is due to a fragmented learning approach, where subjects are separated into isolated disciplines, reducing the opportunity for interdisciplinary thinking and critical thinking. This hinders the development of problem-solving skills and is essential for global challenges like climate change and sustainable development. Inadequate pedagogical strategies, such as teacher-centered, lecture-based approaches and the failure to adopt authentic instructional strategies, also contribute to poor performance (Adesina et al., 2023; Kartini et al., 2023). These methods often emphasize rote memorization over critical thinking and creativity, leading to disengagement among learners. Socioeconomic disparities and access to STEAM education are also significant factors. In many parts of the world, students from low-income backgrounds lack the resources necessary to succeed,

such as qualified teachers, up-to-date textbooks, and technological tools (Nyaaba et al., 2024). These inequities are especially pronounced in developing countries and marginalized communities. Furthermore, the lack of exposure to STEAM role models and mentors can further discourage students from pursuing these fields. Addressing these issues is crucial for promoting STEAM proficiency and addressing the challenges faced by STEAM students.

The push for Science, Technology, Engineering and Mathematics (STEM) education has gained global attention, aiming to foster innovation, critical thinking, and problem-solving abilities in young learners. However, the STEM framework often neglects the role of Art, which many advocates believe plays a vital role in fostering creativity and holistic thinking. This has led to the emergence of the STEAM approach, which emphasizes the integration of Art with traditional STEM subjects. Art plays a crucial role in human culture and education, promoting self-expression, creativity, and innovation (Niu et al., 2023; Zhan et al., 2023). It encourages learners to think outside the box, consider multiple perspectives, and communicate complex ideas visually and emotionally. This is especially valuable in STEM fields, where innovation often arises from creative problem-solving and the ability to envision new possibilities. The compartmentalization of STEM subjects also leads to a rigid, reductionist approach to problem-solving, stifling creativity. By incorporating Art into STEM education, educators can capture the interest of students who might otherwise feel alienated from these fields, increasing engagement, motivation, and participation in both STEM and non-STEM subjects. The STEAM approach, which incorporates artistic principles and creative processes into STEM education, emphasizes the importance of creativity, imagination, and design in innovation. By blending analytical and creative knowledge, STEAM prepares students to tackle real-world problems in flexible and dynamic ways (Adesina et al., 2023; Montés et al., 2022; Zhan et al., 2023). It encourages experimentation, risk-taking, and failure as stepping stones to success, reflecting the reality of modern careers. STEAM also emphasizes aesthetics and user experience in technological design, enhancing the real-world applicability of students' work.

Interdisciplinary collaboration is promoted in STEAM projects, combining knowledge of science, technology, and mathematics with artistic and creative skills. This fosters a more collaborative and holistic approach to problem-solving, helping students become more adaptive thinkers and better collaborators (Montés et al., 2022; Niu et al., 2023; Zhan et al., 2023). However, implementing STEAM in traditional education systems faces challenges, such as the compartmentalized structure of school curricula and the lack of professional development for teachers. To fully realize the potential of STEAM education, policymakers must recognize the importance of Art in fostering creativity and innovation, invest in teacher training and professional development, and work with schools and communities to create more opportunities for students to engage in STEAM activities both in and outside the classroom. STEAM education, or Science, Technology, Engineering, Arts, and Mathematics, is a transformative approach to education that focuses on fostering innovation, addressing global challenges, and preparing students for a dynamic job market. It emphasizes creativity and artistic thinking, combining arts with traditional STEM subjects to create a more holistic learning experience. This approach enhances problem-solving, critical thinking, and collaboration skills, which are increasingly valuable in the modern workforce (Chang Rundgren & Rundgren, 2015 in Nadja Freichs & Chang Rundgren, 2019). The 21st century presents a range of global challenges, such as climate change, sustainability, health crises, and technological ethics. STEAM education equips students with the interdisciplinary knowledge and skills needed to address these complex issues. By integrating science, technology, engineering, arts, and mathematics, STEAM education fosters a comprehensive understanding of these challenges and encourages students to develop solutions that are both scientifically sound and socially responsible.

Concept of Artificial Intelligence:

Artificial Intelligence (AI) is a transformative technology that has the potential to revolutionize various fields, including education, healthcare, finance, transportation, and entertainment. It involves various subfields such as machine learning, natural language processing, robotics, and computer vision. Machine learning (ML) is a subset of AI focused on developing algorithms that allow computers to learn from and make predictions based on data. Natural language processing (NLP) enables machines to understand, interpret, and generate human language, used in applications like Chabot's, translation services, and sentiment analysis(Adesina, et al.,2023; Kartini et al., 2023). In the financial sector, AI is used for fraud detection, algorithmic trading, and customer service. In transportation, AI is driving advancements in autonomous vehicles and smart transportation systems. Entertainment uses AI for content recommendation, personalized user experiences, and creative applications. The rapid development and deployment of AI technologies have significant implications for society, ranging from ethical considerations to economic impacts. Ethical concerns include privacy, bias, and accountability, as AI systems often require large amounts of data.

Economic impact includes job displacement and workforce reskilling, while social impact includes the potential to transform social interactions and societal structures (Jowallah, 2024; Saddam & Hasan, 2024; Wei et al., 2024).

Future directions for AI include Explainable AI (XAI), AI Ethics and Governance, and General Artificial Intelligence (GAI). By understanding AI's core concepts, applications, and implications, we can better navigate the opportunities and challenges presented by AI. Addressing ethical considerations, economic impacts, and social implications is crucial to ensure that AI technologies are developed and used in ways that benefit society as a whole (OECD, 2024). Artificial Intelligence (AI) is revolutionizing education by providing personalized learning experiences, adaptive learning technologies, and enhanced teacher-student interactions. AI-driven systems analyze student learning behaviors and progress, allowing educators to create tailored experiences (Karagoz et al., 2019). These systems assess students' performance in real-time, providing instant feedback and adjusting lesson plans. AI and adaptive learning technologies are closely related, with AI enabling adaptive learning platforms that adjust content based on individual needs. AI also revolutionizes teacher-student interactions, automating grading, providing real-time data, and supporting differentiated instruction. In STEAM subjects, AI enhances learning of complex concepts, fosters creativity, and improves problem-solving skills (Hoffman & Budree, 2024; Jowallah, 2024).

Concept of STEAM Education

STEAM education is an interdisciplinary approach that combines Science, Technology, Engineering, Arts, and Mathematics to provide students with a comprehensive and engaging learning experience. It encourages students to make connections between different fields and apply their knowledge in innovative ways, fostering a more holistic understanding of complex concepts and real-world problems. (SAGE., 2024). The principles of STEAM education include interdisciplinary learning, project-based learning (PBL), creativity and innovation (Akramova et al., 2024; Cao et al., 2023; Niu et al., 2023; Utaminingsih et al., 2023). The benefits of STEAM education extend beyond academic achievement, impacting students' personal and professional development. It enhances problem-solving skills by encouraging students to tackle complex, realworld problems, increasing engagement and motivation, and preparing students for future careers. The skills developed through STEAM education are highly valued in the modern job market, making them a strong foundation for pursuing careers in STEAM fields and creative and design industries.

Implementing STEAM education in schools involves several key strategies, including curriculum design, professional development for educators, collaboration and partnerships between educators, industry professionals, and community organizations. (Mejias., 2021). Research indicates that STEAM education can lead to improved academic performance, development of 21st-century skills, and increased interest in STEAM careers (Gaona & González, 2022; Kamaran., 2018; Zhan et al., 2023). Precisely, STEAM education represents a transformative approach to learning that integrates science, technology, engineering, arts, and mathematics to provide students with a comprehensive and engaging educational experience. Successful implementation requires thoughtful curriculum design, professional development for educators, and collaboration with industry and community partners. As educational systems continue to evolve, STEAM education will play a crucial role in shaping the future of learning and preparing students for a rapidly changing world (Kamaran., 2018; Zhan et al., 2023).

The success of STEAM hinges on the capacity of educators to teach across disciplines. However, there is a widespread problem with teacher shortages in core STEM fields and a lack of sufficient professional development for integrating the Arts component effectively. Many teachers struggle with the interdisciplinary nature of STEAM, often defaulting to teaching the subjects in isolation rather than through a truly integrated approach. The challenges of funding and teacher training directly contribute to significant equity and access disparities. Students from underserved communities often have limited access to quality STEAM programs, which can perpetuate existing achievement gaps. The lack of representation and the difficulty in recruiting and retaining diverse educators further compound the issue of equity in STEAM fields. (Belbase., 2022).

The core strength of the STEAM approach is its ability to cultivate essential 21st-century skills, including critical thinking, creativity, collaboration, and communication. By engaging students in complex, real-world problem-solving, STEAM moves beyond rote memorization to develop the innovative mindset required for future careers. STEAM provides a powerful framework for interdisciplinary and project-based learning (PBL), which enhances student engagement and learning outcomes. This approach allows students to see the connections between different subjects, making learning more relevant and meaningful. The Arts component, in particular, enhances this by encouraging divergent thinking and creative solutions to technical problems.

(Atomic Adventure., 2025).

STEAM Curriculum Development

The development of a successful STEAM (Science, Technology, Engineering, Arts, and Mathematics) curriculum involves designing educational experiences that integrate these disciplines to enhance student learning and engagement. This approach aims to foster critical thinking, creativity, and problem-solving skills by connecting academic content with real-world applications. Key principles of STEAM curriculum development include interdisciplinary integration, project-based learning, inquiry-based learning, and authentic assessment. Strategic considerations for implementing a STEAM curriculum include curriculum mapping, collaborative planning, professional development, and technology integration. Curriculum mapping aligns curriculum components with educational standards and learning objectives. (Perales et al., 2024). At the same time, collaborative planning encourages students to work on authentic projects that mirror real-world challenges, incorporating cross-cutting concepts like energy, materials, matter, environment etc. Professional development opportunities should focus on both content knowledge and pedagogical approaches to support successful STEAM instruction. Best practices for creating an effective STEAM curriculum include designing authentic projects, fostering collaboration, encouraging creativity, and utilizing real-world connections. (Amanova, 2025). These practices help students understand the relevance of their learning and see how their knowledge can be applied outside the classroom. Evaluating and sustaining a STEAM curriculum are essential aspects of curriculum development. Regular evaluation helps identify areas for improvement and ensures the curriculum remains effective and relevant. Support from school leaders, policymakers, and the broader educational community is also crucial for sustaining innovation and ensuring the long-term success of STEAM programs. Certainly, developing an effective STEAM curriculum involves integrating science, technology, engineering, arts, and mathematics to create a cohesive and engaging learning experience. By adhering to principles of interdisciplinary integration, project-based learning, inquiry-based learning, and authentic assessment, educators can design curricula that foster critical thinking, creativity, and problem-solving skills. (Adesina et al., 2023; Akramova et al., 2024; Cao et al., 2023; Kamaran, 2018; Nyaaba e al., 2024).

Artificial Intelligence and STEAM Curriculum Development

The central concept for integrating AI into the curriculum is AI literacy. While a universal, age-appropriate definition remains a challenge, particularly for younger students, contemporary research positions AI literacy as a multifaceted competency. It is not merely about using AI tools, but about understanding their underlying principles, mechanisms, and societal impacts. (Akmetova., 2025). AI tools, particularly generative AI models, have demonstrated a significant capacity to improve students' conceptual understanding and reduce qualitative misconceptions in complex subjects. By facilitating personalized learning experiences and supporting constructivist, inquiry-based approaches, AI allows students to engage with abstract concepts in more interactive and tailored ways. This is particularly relevant in the Science and Mathematics components of STEAM, where AI can provide real-time feedback and adapt problem sets to individual student needs. (Yim., 2024). Despite the clear benefits, the successful integration of AI into STEAM curricula faces several significant challenges that must be proactively addressed by policymakers and educational leaders. Perhaps the most significant barrier is the lack of adequate teacher training and AI competencies. Educators require substantial and ongoing professional development to effectively teach AI concepts and integrate AI tools into their pedagogy. Without a confident and competent teaching workforce, the potential of AI in the curriculum will remain largely unrealized. (El Fathi, et al., 2025).

Professional development programs should provide educators with knowledge about AI technologies, their applications in education, and strategies for integrating AI into the curriculum. The benefits of AI integration in STEAM education include enhanced engagement, improved learning outcomes, preparation for future careers, and fostering innovation. (Blair., 2025). AI technologies can make learning more interactive, making abstract concepts more tangible and exciting. Personalized learning experiences can lead to better understanding and retention of STEAM concepts. Exposure to AI technologies in education prepares students for future careers in technology and engineering fields, developing practical skills that are highly valued in the job market. (Karagoz et al., 2019; Karampelas, 2021; Saddam & Hasan, 2024).

However, integrating AI can lead to more innovative and impactful STEAM education, equipping students with the skills and knowledge needed to thrive in the 21st century. The integration of Artificial Intelligence (AI) into the STEAM curriculum offers a transformative approach to education. Key principles include personalized learning experiences, data-driven insights, interdisciplinary approaches, ethical AI education, and a structured framework. AI should be used to meet specific instructional goals, facilitate inquiry-based and experiential learning, provide continuous feedback, and encourage collaboration. Challenges include addressing the digital divide, teacher training,

ethical concerns, and opportunities. However, AI can enhance learning experiences, create immersive platforms, and provide practical experience with AI tools. Case studies show that AI-supported STEAM curriculum implementations have significantly improved student outcomes and increased engagement in STEAM subjects (OECD, 2024; Zhang et al., 2024). Runway ML is an AI-powered platform that enables students to create innovative, original art, fostering creative thinking and problem-solving skills essential in STEAM education, as evidenced by case studies of AI-supported projects (McCormack, Gifford, & Hutchings, 2019).

Artificial Intelligence (AI) is playing a significant role in STEAM education, fostering creativity, problem-solving, and interdisciplinary innovation. AI-based tools enable crossdisciplinary projects that merge AI with creative arts, allowing artists to push boundaries and experiment with techniques that would be difficult or impossible to achieve manually. AI also aids in engineering by enabling faster and more efficient problem-solving through generative design tools and simulations (Jowallah, 2024; Karampelas, 2021). AI-driven learning platforms like Carnegie Learning's MATHia and Microsoft's AI-powered Math Solver offer customized feedback and alternative strategies. AI has revolutionized creative arts, including critical thinking, artistic creation, and design thinking, enabling faster, data-informed decisions and fostering innovation at the intersection of creativity and technology in STEAM education.

Observation

The core observation is that the integration of Art into the traditional STEM disciplines is crucial for fostering creativity, holistic thinking, and innovation, which are often stifled by the rigid, reductionist nature of compartmentalized subjects. Furthermore, the paper highlights Artificial Intelligence (AI) as the next frontier in this educational transformation. AI is not merely a subject to be taught but a tool to revolutionize the delivery of the STEAM curriculum through:

- I. Personalized Learning: AI-driven systems can analyze student performance in real-time, providing instant feedback and adjusting lesson plans to individual needs.
- II. Enhanced Engagement: AI technologies can make abstract concepts more tangible and exciting, leading to improved learning outcomes and better retention of STEAM concepts.
- III. Future Career Preparation: Exposure to AI in education develops practical skills highly valued in the modern job market, preparing students for a rapidly evolving technological landscape.

In essence, the future of effective education lies in a synergistic model where the holistic, creative principles of STEAM are amplified by the adaptive, data-driven capabilities of Artificial Intelligence, creating a comprehensive and engaging learning experience that prepares students for the complexities of the 21st century.

Conclusion

Artificial Intelligence (AI) is revolutionizing STEAM curriculum development by creating personalized learning pathways. AI algorithms analyze students' learning styles, strengths, and areas for improvement, creating tailored educational experiences. This data-driven approach leads to more meaningful learning experiences and higher student retention rates in STEAM fields (Karampelas, 2021; Mohana et al., 2022; Saddam & Hasan, 2024). The future of STEAM curricula will be flexible, dynamic, and interdisciplinary, with AI-powered platforms enabling modular learning experiences. Collaboration between human educators, curriculum planners, other educational stakeholders, and AI systems is essential for effective and equitable integration in STEAM education, benefiting all students in the future.

Suggestion

This paper suggests for integrating AI into STEAM curriculum development; schools should integrate AI technologies into STEAM subjects to improve personalized learning, critical thinking, and creativity. Teachers should receive ongoing training on AI technologies, data ethics, and curriculum adaptation. AI should promote accessibility and equity for underserved communities. Ethical AI use in education should be prioritized, focusing on data privacy, algorithmic bias, and transparency. Finally, aligning curricula with future job market trends can prepare students for a sustainable future.

References

Adesina, A.E., Gabriel, E.T., Iyanda F.O., Odeleye, F.A., & Ogunsola, O.A. (2023). Initiating paradigm shift in steam education: The expediency of learning management systems. Edited *Internationally Conference Proceeding of Education*, University of Ibadan, pp. 922-938

Akhmetova, A. I. (2025). A systematic review of artificial intelligence in high school STEM education research. *European Journal of Mathematics and Science Education*.

Akramova, G., Ma'murov, B., Akramova, S., Rustambek Qo'ldoshev, R. & Shodmonova A. (2024). Methods of using STEAM technologies in the development of pupils' computational thinking. Pages 23-29.

Amanova, A. K. (2025). A systematic review of the implementation of STEAM education in schools. *European Journal of Mathematics and Science Education*, 15894.

Atomic Adventures USA. (2025, January 10). Preparing for Future Careers: How STEAM Education Shapes the Workforce of Tomorrow.

Belbase, S., Mainali, B. R., & Kasemsukpipat, W. (2022). At the dawn of science, technology, engineering, arts, and mathematics (STEAM) education: prospects, priorities, processes, and problems. *International Journal of Science Education*, 44(10), 1639-1662.

Blair, J. (2025). Art meets AI: Exploring the opportunities and challenges of generative art in education. *Online Journal of Education and STEM* 7914.

El Fathi, T., Saad, A., Larhzil, H., Lamri, D., & Al Ibrahim, E. M. (2025). Integrating generative AI into STEM education: enhancing conceptual understanding, addressing misconceptions, and assessing student acceptance. *Disciplinary and Interdisciplinary Science Education Research*. 7(1), 6.

Frerichs, N. & Chang Rundgren, S. (2019). Science and the media in a digital age. In B. Akpan (Ed.). *Science education: Visions of the future* (183-196). Abuja: Science Teachers Association of Nigeria.

Gaona, R. J. & González, M. M. (2022). STEAM Skills Developed in Basic General Education through the Creation of the Digital Robot through the m Block Platform, Third *International Conference on Information Systems and Software Technologies* (ICI2ST), and Pp. 152-157

Hoffman, G. D. & Budree, A. (2024). AI-powered content creation and curriculum development based on learning styles. In J. Braman, A. Brown, & M. Richards (Eds.), *Reshaping Learning with Next Generation Educational Technologies* (pp. 54-71). IGI Global.

Mejias, S. (2021). The trouble with STEAM and why we use it anyway. *Science Education*, 105(6), 1037-1057.

Istileulova, Y. (2024). STEAM approach: SMS (Stories Based on Music about Scientists) on artificial intelligence created by Jacob Bruce (1669– 1735). *Proceedings of Socratic Lectures*. 2024, 10, 138-146.

Jowallah, R. J. (2024). Integrating Artificial Intelligence (AI) into the curriculum: Empowering the next generation through proactive AI education. In S. Hai-Jew (Ed.), *Generative AI in Teaching and Learning* (pp. 355-368). IGI Global.

Kamaran, F. (2018) "Towards a steam underpinned industrial digitalization curriculum," *The STEAM Journal*, 3(2).

Karagoz, E., Cavas, B. & Oral, L. O. (2019). A view of the impact of technology on science education in 2070. In B. Akpan (Ed.). *Science education: Visions of the future* (261-287). Abuja: Science Teachers Association of Nigeria.

Karampelas, A. (2021). Artificial intelligence and machine learning in the steam classroom: Analysis of performance data and reflections of international high school students. *Hellenic Journal of STEM Education*, 1(2), 59–66.

Montés, N., Aloy, P., Ferrer, T., Romero, P.D., Barquero, S. & Carbonell, A.M. (2022). EXPLORIA, STEAM Education at University Level as a New Way to Teach Engineering *Mechanics in an Integrated Learning Process*.

Niu, W., Hu, W., & Cheng, L., eds. (2023). Creativity and innovation in STEAM pedagogies in the intelligence era Applied Sciences, 97114.

Nyaaba, M., Akanzire, B. N. & Mohammed, S. H. (2024). Prioritizing STEAM education from the start: the path to inclusive and sustainable steam education.

OECD (2024 c). The future of artificial intelligence. OECD Digital Economy Outlook 2024 (Vol.1): Embracing the Technology Frontier. Paris: OECD Publishing

Perales, F. J., & Aróstegui, J. L. (2024). The STEAM approach: Implementation and educational, social and economic consequences. *Arts Education Policy Review*, 125(3), 161-173.

Saddam, H. M. I. & Hasan, G. (2024). "The Best of Way of using AI Technology in Designing Technical Education Curriculum in Meeting Future Industry Demands: Smart Way," 2024 4th *International Conference on Advanced Computing and Innovative Technologies in Engineering* (ICACITE), Greater Noida, India, pp. 1403-1406.

SAGE Journal. (2024, August 26). *The challenges and strategies for promoting equity in STEAM education*.

Utaminingsih, E. S., Ellianawati, E., Sumartiningsih, S & Puspita, M. A. (2023). STEAM education. *Jurnal Ilmiah Profesi Pendidikan*, 8(3), 1605-1612

Wei, D., Meng, D., & Wang, P. (2024). Research and innovation of artificial intelligence curriculum system—under the background of “double first-class” construction. In: Gan, J., Pan, Y., Zhou, J., Liu, D., Song, X., Lu, Z. (eds) Computer Science and Educational Informatization. CSEI 2023. Communications in Computer and Information Science, vol 1900. Springer, Singapore.

Yim, I. H. Y. (2024). A critical review of teaching and learning artificial intelligence (AI) literacy: Developing an intelligence-based AI literacy framework for primary school education. *Computers and Education: Artificial Intelligence*.

Zhan, Z.; Hu, Q.; Liu, X.; Wang, S. (2023). STEAM education and the innovative pedagogies in the intelligence era. *Appl. Sci.*, 13, 5381.

Zhang, L., Eike, R. J. & Barbour, C., (2024) “Curriculum development for steam cooperative learning to research and design cotton intimates”, *International Textile and Apparel Association Annual Conference Proceedings* 80(1).